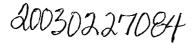
AD-A266 337

DOT/FAA/AM-93/7

Office of Aviation Medicine Washington, D.C. 20591

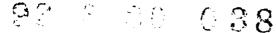
Variations of Time-to-Incapacitation and Carboxyhemoglobin Values in Rats Exposed to Two Carbon Monoxide Concentrations


Donald C. Sanders Boyd R. Endecott Roxane M. Ritter Arvind K. Chaturvedi

Civil Aeromedical Institute Federal Aviation Administration Oklahoma City, Oklahoma 73125

May 1993

Final Report



This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

93-14972

NOTICE

This document is disseminated under the sponsorship of the U. S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The use of animals for this study was approved by the Institutional Laboratory Animal Use Review Committee under the U. S. Department of Agriculture Animal Welfare Act. The animals were cared for and humanely used in accordance with the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals, PHS Publication (NIH) No. 86-23, revised 1985.

Accesi	on For		1
DTIC	ounced	A	*
By	ution /		
А	vailability	Codes	1
Dist	Avail an Speci		1
A-1			

THE OCALITY INSPECTED 5

Technical Report Documentation Page

	2. Government Accession No.	J. N	ecipient & Caralog N	(a.
DOT/FAA/AM-93/7				
		}		
4. Title and Subtitle		5. 8	epart Date	
VARIATIONS OF TIME-TO-INCA	PACITATION AND	" "	May 1	1003
CARBOXYHEMOGLOBIN VALUES I		<u> </u>		
1		9. P	erforming Organizati	on Cade
CARBON MONOXIDE CONCENTRAT	1005			
		9. P	erforming Organizatio	on Report No.
7. Author(s) Donald C. Sanders,		۱.		
Ritter, and Arvind	K. Chaturvedi	1		
9. Performing Organization Name and Address	1	10.	Mork Unit No. (TRAL	\$1
FAA Civil Aeromedical Inst				•
P. O. Box 25082		 	Centreet et Grent Na	
Oklahoma City, OK 73125-5	066	'''	Centract et Grent No	•
1		-		
		1 13. 1	ype of Repart and P	eriod Cavered
12. Spansaring Agency Name and Address	_	1		
Office of Aviation Medicin		- 1		
Federal Aviation Administr		-		
800 Independence Avenue, S	W	14.	pensering Agency C	ade
Washington, DC 20591				***
15. Supplementary Nates		1		
13. Supplementary Natas				
This work was performed un	der task AM-B-92-TOX-60			
16. Abstract	d shak maranan awakanti			
	d that passenger protecti			
aircraft passengers from s				
during an in-flight-plus-e	vacuation bhase. Carbon mo	noxide		
abundant smoke components	and is the major threat in a	most f	ire atmospher	res. Time-to-
abundant smoke components a incapacitation (t _i) is an e	and is the major threat in a and-point related to escape	nost f from	ire atmospher a fire, and v	res, Time-to- variations in
abundant smoke components a incapacitation (t _i) is an e	and is the major threat in a and-point related to escape	nost f from	ire atmospher a fire, and v	res, Time-to- variations in
abundant smoke components a incapacitation (t _i) is an e t _i measurements at specific	and is the major threat in a and-point related to escape CO concentrations have not	most f from been:	ire atmospher a fire, and v statistically	res, Time-to- variations in y documented.
abundant smoke components a incapacitation (t _i) is an e t _i measurements at specific Therefore, variance in t _i	and is the major threat in mind-point related to escape GO concentrations have not at two GO concentrations the	most f from been : hat pr	ire atmospher a fire, and v statistically oduce 5- and	res, Time-to- variations in y documented. 35-min t _i in
abundant smoke components a incapacitation (t _i) is an e t _i measurements at specific Therefore, variance in t _i a rats were determined; bloom	and is the major threat in a end-point related to escape CO concentrations have not at two CO concentrations the d carboxyhemoglobin (COHb)	nost f from been : hat pr satur	ire atmospher a fire, and v statistically oduce 5- and ation at t _i w	res, Time-to- variations in y documented. 35-min t _i in vas measured.
abundant smoke components a incapacitation (t _i) is an e t _i measurements at specific Therefore, variance in t _i rats were determined; bloofifty male Sprague-Dawley in	and is the major threat in a end-point related to escape CO concentrations have not at two CO concentrations the d carboxyhemoglobin (COHb) rats were individually expo	nost f from been: hat pr satur sed to	ire atmospher a fire, and v statistically oduce 5- and ation at t _i w each CO cond	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in
abundant smoke components a incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; bloofifty male Sprague-Dawley a chamber equipped with a	and is the major threat in a end-point related to escape CO concentrations have not at two CO concentrations the d carboxyhemoglobin (COHb) rats were individually expo a rotating cage, and ti w	nost f from been : hat pr satur sed to	ire atmospher a fire, and vestatistically oduce 5- and ation at t _i we each CO cond corded as the	res. Time-to- variations in y documented. 35-min t _i in was measured. centration in the time from
abundant smoke components a incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; blook Fifty male Sprague-Dawley a chamber equipped with a insertion of the animal in	and is the major threat in a ind-point related to escape CO concentrations have not at two CO concentrations th d carboxyhemoglobin (COHb) rats were individually expo a rotating cage, and t _i w to the cage until it could	most f from been hat pr satur sed to vas re no los	ire atmospher a fire, and we statistically oduce 5- and ation at to be each CO concorded as the ager walk. In	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in the time from n another set
abundant smoke components a incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; blook Fifty male Sprague-Dawley a chamber equipped with a insertion of the animal in of experiments, blood COH	and is the major threat in a end-point related to escape CO concentrations have not at two CO concentrations the d carboxyhemoglobin (COHb) rats were individually expo a rotating cage, and t _i we to the cage until it could b saturation was determine	most f from been: hat pr satur sed to vas re no lor d in:	ire atmospher a fire, and vestatistically oduce 5- and ation at to be each CO concorded as the ats exposed	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in the time from n another set to these CO
abundant smoke components a incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; blook Fifty male Sprague-Dawley a chamber equipped with a insertion of the animal in of experiments, blood COH	and is the major threat in a end-point related to escape CO concentrations have not at two CO concentrations the d carboxyhemoglobin (COHb) rats were individually expo a rotating cage, and t _i we to the cage until it could b saturation was determine	most f from been: hat pr satur sed to vas re no lor d in:	ire atmospher a fire, and vestatistically oduce 5- and ation at to be each CO concorded as the each CO corded as the exposed	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in the time from n another set to these CO
abundant smoke components incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; bloof Fifty male Sprague-Dawley a chamber equipped with insertion of the animal in of experiments, blood COH concentrations at stepwise	and is the major threat in a end-point related to escape CO concentrations have not at two CO concentrations the d carboxyhemoglobin (COHb) rats were individually expo a rotating cage, and t _i we to the cage until it could be saturation was determine intervals less than t _i . At	most f from been: hat pr satur sed to vas re no lor d in :	ire atmospher a fire, and vestatistically oduce 5- and ation at to be each CO concorded as the each CO concorded as the exposed pacitation ar	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in he time from n another set to these CO nd at the end
abundant smoke components incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; blooffifty male Sprague-Dawley a chamber equipped with insertion of the animal in of experiments, blood COH concentrations at stepwise of each exposure interval,	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the carboxyhemoglobin (COHb) rats were individually exposarotating cage, and to the cage until it could be saturation was determined intervals less than to the cage quickly removed	most f from been hat pr satur sed to as re no lor d in incar d from	ire atmospher a fire, and vestatistically oduce 5- and ation at to be each CO concorded as the mats exposed pacitation are the cage and vestation are the ca	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in the time from another set to these CO and at the end and killed for
abundant smoke components incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; bloof Fifty male Sprague-Dawley a chamber equipped with insertion of the animal in of experiments, blood COHC concentrations at stepwise of each exposure interval, blood collection and COHC	and is the major threat in a cond-point related to escape CO concentrations have not at two CO concentrations the carboxyhemoglobin (COHb) rats were individually exposarotating cage, and to the cage until it could be saturation was determined intervals less than to the cage quantitation. Values (mean	nost f from been: hat pr satur sed to vas re no loi d in : incap f from f SD)	ire atmospher a fire, and vestatistically oduce 5- and ation at to be each CO concorded as the mats exposed pacitation are the cage and for measure	res. Time-to- variations in y documented. 35-min t _i in vas measured, centration in the time from n another set to these CO and at the end and killed for ed parameters
abundant smoke components incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; bloof Fifty male Sprague-Dawley a chamber equipped with insertion of the animal in of experiments, blood COHC concentrations at stepwise of each exposure interval, blood collection and COHC were: For the 5-min t _i stu	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the carboxyhemoglobin (COHb) rats were individually exposarotating cage, and to the cage until it could be saturation was determine intervals less than to the cage quantitation. Values (mean dy, CO = 5706 ± 178 ppm, to	nost f from been hat pr satur sed to vas re no loi d in : incap from £ SD) i ~ 5.	ire atmospher a fire, and vestatistically oduce 5- and ation at to be each CO concorded as the mater exposed pacitation are the cage and for measure 0 ± 0.35 min	res. Time-to- variations in y documented. 35-min t _i in vas measured, centration in he time from n another set to these CO and at the end and killed for ed parameters i, and CCHb =
abundant smoke components incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; bloof Fifty male Sprague-Dawley a chamber equipped with insertion of the animal in of experiments, blood COHC concentrations at stepwise of each exposure interval, blood collection and COHC were: For the 5-min t _i sturbook to the step to the	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the carboxyhemoglobin (COHb) rats were individually expose rotating cage, and to the cage until it could be saturation was determine intervals less than to At rats were quickly removed quantitation. Values (mean dy, CO = 5706 ± 178 ppm, to to study, CO = 1902 ± 33	most f from been hat pr satur sed to vas re no loi d in : incap d from x SD) y 50, ppm,	ire atmosphera fire, and variatistically oduce 5- and ation at to we each CO concorded as thought at a exposed pacitation are the cage and for measure 0 ± 0.35 min to = 34.5 ±	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in he time from n another set to these CO and at the end and killed for ed parameters i, and CCHb = 6.8 min, and
abundant smoke components incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; bloof Fifty male Sprague-Dawley a chamber equipped with insertion of the animal in of experiments, blood COH concentrations at stepwise of each exposure interval, blood collection and COHb were: For the 5-min t _i stu 80.8 ± 1.3%; for the 35-mi COHb = 71.2 ± 1.0%. COH	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the discrepance of two CO concentrations the discrepance of two CO concentrations the discrepance of two concentrations and CO concentrations at the case until it could be saturation was determined intervals less than CO can always and CO can always are quantitation. Values (mean dy, CO = 5706 ± 178 ppm, the case of the case	nost f from been hat pr satur sed to vas re no lor d in : incap f from x SD) ppm, eau p	ire atmosphera fire, and vestatistically oduce 5- and ation at to be each CO concorded as the mass exposed pacitation are the cage and for measure 0 ± 0.35 min to incorded to	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in he time from n another set to these CO and at the end and killed for ed parameters in, and CCdb = 6.8 min, and capacitation.
abundant smoke components incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; bloof Fifty male Sprague-Dawley a chamber equipped with insertion of the animal in of experiments, blood COHC concentrations at stepwise of each exposure interval, blood collection and COHC were: For the 5-min t _i stu 80.8 ± 1.3%; for the 35-mi COHC = 71.2 ± 1.0%. COHC Coefficients of variation	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the discrepance of two CO concentrations the discrepance of two CO concentrations the discrepance of two CO concentrations at two CO concentrations at two CO concentrations are and CO at the cage until it could be saturation was determined intervals less than CO at the cage until two CO concentrations. Values (mean CO concentration) at CO concentration CO concentrations CO concen	nost f from been hat pr satur sed to vas re no loi d in i incap f from i SD) j = 5. ppm, eau p	ire atmosphera fire, and vestatistically oduce 5- and ation at to be each CO concorded as the case and for measure 0 ± 0.35 min to incorde the 5- and 3	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in he time from n another set to these CO nd at the end id killed for ed parameters n, and CCdb = 6.8 min, and capacitation. 15-min study,
abundant smoke components incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; blood Fifty male Sprague-Dawley a chamber equipped with a insertion of the animal in of experiments, blood COHC concentrations at stepwise of each exposure interval, blood collection and COHC were: For the 5-min t _i stu 80.8 ± 1.3%; for the 35-mi COHC = 71.2 ± 1.0%. COHC Coefficients of variation respectively. The signific	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the discrepance of carboxyhemoglobin (COHb) rats were individually exposarotating cage, and t_i who the cage until it could be saturation was determined intervals less than t_i . At rats were quickly removed quantitation. Values (mean dy, $CO = 5706 \pm 178$ ppm, the t_i study, $CO = 1902 \pm 33$ be levely tended to plate for t_i were 7.2% and 19.5% ant difference in the two CO	most f from been: hat pr satur sed to vas re no loi d in: incap i from i SD) i = 5. ppm, eau p f for	ire atmosphera fire, and vestatistically oduce 5- and ation at to be each CO concorded as the mass exposed pacitation are the cage and for measure 0 ± 0.35 min to 10 to	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in he time from n another set to these CO nd at the end id killed for ed parameters n, and CCHb = 6.8 min, and capacitation. 15-min study, e approach of
abundant smoke components incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; bloof Fifty male Sprague-Dawley a chamber equipped with a insertion of the animal in of experiments, blood COHC concentrations at stepwise of each exposure interval, blood collection and COHC were: For the 5-min t _i stu 80.8 ± 1.3%; for the 35-mi COHC = 71.2 ± 1.0%. COHC Coefficients of variation respectively. The signific COHC to a maximal level be	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the discrepance of carboxyhemoglobin (COHb) rats were individually exposarotating cage, and t_i who the cage until it could be saturation was determined intervals less than t_i . At rats were quickly removed quantitation. Values (mean dy, $CO = 5706 \pm 178$ ppm, the t_i study, $CO = 1902 \pm 33$ for t_i were 7.2% and 19.5% ant difference in the two defore incapacitation suggestions.	most f from been: hat pr satur sed to vas re no loi d in : incap f from ppm, eau p f for COHb lost the	ire atmosphera fire, and vestatistically oduce 5- and ation at to be each CO concorded as the case and the case and for measure 0 ± 0.35 min to 10 to	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in the time from n another set to these CO and at the end and killed for ed parameters n, and CCHb = 6.8 min, and capacitation. 15-min study, e approach of the saturation
abundant smoke components incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; blood Fifty male Sprague-Dawley a chamber equipped with a insertion of the animal in of experiments, blood COHC concentrations at stepwise of each exposure interval, blood collection and COHC were: For the 5-min t _i stu 80.8 ± 1.3%; for the 35-mi COHC = 71.2 ± 1.0%. COHC Coefficients of variation respectively. The signific	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the discrepance of carboxyhemoglobin (COHb) rats were individually exposarotating cage, and t_i who the cage until it could be saturation was determined intervals less than t_i . At rats were quickly removed quantitation. Values (mean dy, $CO = 5706 \pm 178$ ppm, the t_i study, $CO = 1902 \pm 33$ for t_i were 7.2% and 19.5% ant difference in the two defore incapacitation suggestions.	most f from been: hat pr satur sed to vas re no loi d in : incap f from ppm, eau p f for COHb lost the	ire atmosphera fire, and vestatistically oduce 5- and ation at to be each CO concorded as the case and the case and for measure 0 ± 0.35 min to 10 to	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in he time from n another set to these CO and at the end and killed for ed parameters n, and COHD = 6.8 min, and capacitation. 15-min study, e approach of the saturation
abundant smoke components incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; bloof Fifty male Sprague-Dawley a chamber equipped with a insertion of the animal in of experiments, blood COHC concentrations at stepwise of each exposure interval, blood collection and COHC were: For the 5-min t _i stu 80.8 ± 1.3%; for the 35-mi COHC = 71.2 ± 1.0%. COHC Coefficients of variation respectively. The signific COHC to a maximal level be	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the discrepance of carboxyhemoglobin (COHb) rats were individually exposarotating cage, and t_i who the cage until it could be saturation was determined intervals less than t_i . At rats were quickly removed quantitation. Values (mean dy, $CO = 5706 \pm 178$ ppm, the t_i study, $CO = 1902 \pm 33$ for t_i were 7.2% and 19.5% ant difference in the two defore incapacitation suggestions.	most f from been: hat pr satur sed to vas re no loi d in : incap f from ppm, eau p f for COHb lost the	ire atmosphera fire, and vestatistically oduce 5- and ation at to be each CO concorded as the case and the case and for measure 0 ± 0.35 min to 10 to	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in he time from n another set to these CO and at the end and killed for ed parameters n, and COHD = 6.8 min, and capacitation. 15-min study, e approach of the saturation
abundant smoke components incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; bloof Fifty male Sprague-Dawley a chamber equipped with a insertion of the animal in of experiments, blood COHC concentrations at stepwise of each exposure interval, blood collection and COHC were: For the 5-min t _i stu 80.8 ± 1.3%; for the 35-mi COHC = 71.2 ± 1.0%. COHC Coefficients of variation respectively. The signific COHC to a maximal level be	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the discrepance of carboxyhemoglobin (COHb) rats were individually exposarotating cage, and t_i who the cage until it could be saturation was determined intervals less than t_i . At rats were quickly removed quantitation. Values (mean dy, $CO = 5706 \pm 178$ ppm, the t_i study, $CO = 1902 \pm 33$ for t_i were 7.2% and 19.5% ant difference in the two defore incapacitation suggestions.	most f from been hat pr satur sed to vas re no loi d in : incap f from ppm, eau p f for COHb lost th t of i	ire atmosphera fire, and vestatistically oduce 5- and ation at to be each CO concorded as the case and the case and for measure 0 ± 0.35 min to 10 to	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in he time from n another set to these CO and at the end and killed for ed parameters n, and COHD = 6.8 min, and capacitation. 15-min study, e approach of the saturation
abundant smoke components incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; bloof Fifty male Sprague-Dawley a chamber equipped with insertion of the animal in of experiments, blood COH concentrations at stepwise of each exposure interval, blood collection and COH were: For the 5-min t _i stured to the standard standard components of variation respectively. The signific COH to a maximal level be levels may not necessarily	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the discrepance of carboxyhemoglobin (COHb) rats were individually expose rotating cage, and to the cage until it could be saturation was determined intervals less than to the rats were quickly removed quantitation. Values (mean dy, CO = 5706 ± 178 ppm, to	most f from been: hat pr satur sed to eas re no loi d in : inca; i from i SD) i = 5. ppm, eau p t for COHb lest th t of i	ire atmosphera fire, and vestatistically oduce 5- and ation at to be each CO concorded as the mass exposed pacitation are the cage and for measure 0 ± 0.35 min to 100 to	res. Time-to-variations in y documented. 35-min t _i in vas measured. The time from a nother set to these CO and at the end and killed for an another set to the set
abundant smoke components incapacitation (t _i) is an etimeasurements at specific Therefore, variance in t _i rats were determined; blook Fifty male Sprague-Dawley a chamber equipped with insertion of the animal in of experiments, blood COH concentrations at stepwise of each exposure interval, blood collection and COH were: For the 5-min t _i stuson 8 ± 1.3%; for the 35-mi COHb = 71.2 ± 1.0%. COH Coefficients of variation respectively. The signification could be a maximal level be levels may not necessarily	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the carboxyhemoglobin (COHb) rats were individually expose rotating cage, and to the cage until it could be saturation was determined intervals less than to the cage until it could be saturation. Values (mean day, CO = 5706 to 178 ppm, to to to the cage until the two countries to the cage until the two Countries to the cage until the two Countries to the two Countries to the cage to the onse to the consequence of the onsequence of the onsequence until the two Countries to the consequence of the onsequence until the two Countries to the consequence of the onsequence of the onsequence of the onsequence of the consequence o	most f from been hat pr satur sed to vas re no loid inca i from i SD) ppm, eau p COHb lo st th t of i	ire atmospher a fire, and vistatistically oduce 5- and ation at tive each CO concorded as the nger walk. It rats exposed pacitation ar the cage and for measure 0 ± 0.35 min ti = 34.5 ± rior to incorded the sevels and the at blood COH incapacitation lable to the	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in he time from n another set to these CO nd at the end id killed for ed parameters n, and CCHb = 6.8 min, and capacitation. 15-min study, e approach of b saturation on.
abundant smoke components incapacitation (t _i) is an etimeasurements at specific Therefore, variance in t _i rats were determined; blook Fifty male Sprague-Dawley a chamber equipped with insertion of the animal in of experiments, blood COH concentrations at stepwise of each exposure interval, blood collection and COH were: For the 5-min t _i stuson 8 ± 1.3%; for the 35-mi COHb = 71.2 ± 1.0%. COH Coefficients of variation respectively. The signification could be a maximal level be levels may not necessarily	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the carboxyhemoglobin (COHb) rats were individually exposar rotating cage, and time to the cage until it could be saturation was determined intervals less than time. At rats were quickly removed quantitation. Values (mean dy, CO = 5706 ± 178 ppm, to time study, CO = 1902 ± 33 lb levels tended to plate for time to capacitation suggested be indicative of the onse limited plate o	most f from been hat pr satur sed to vas re no loid inca i from i SD) i > 5. ppm, eau p COHb lo st th t of i	ire atmospher a fire, and vistatistically oduce 5- and ation at tive each CO conducted as the nger walk. It rats exposed pacitation ar the cage and for measure 0 ± 0.35 min ti = 34.5 ± rior to incompacitation and blood COH incapacitation lable to the onal Technic	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in he time from hanother set to these CO hd at the end hd killed for he d parameters h, and CCHb = 6.8 min, and capacitation. 15-min study, he approach of he saturation he.
abundant smoke components incapacitation (t _i) is an etimeasurements at specific Therefore, variance in t _i rats were determined; blook Fifty male Sprague-Dawley is a chamber equipped with insertion of the animal in of experiments, blood COH concentrations at stepwise of each exposure interval, blood collection and COH were: For the 5-min t _i stured to the standard standard components of variation respectively. The signification components and the signification contains and the signification components and the signification contains and the significant contains and the significan	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the dearwood carboxyhemoglobin (COHb) rats were individually exposarotating cage, and tive to the cage until it could be saturation was determined intervals less than tive At rats were quickly removed quantitation. Values (mean dy, CO = 5706 ± 178 ppm, to tive the two Councer to the tw	most f from been hat pr satur sed to vas re no loid inca i from i SD) i > 5. ppm, eau p COHb lo st th t of i	ire atmospher a fire, and vistatistically oduce 5- and ation at tive each CO concorded as the nger walk. It rats exposed pacitation ar the cage and for measure 0 ± 0.35 min ti = 34.5 ± rior to incorded the sevels and the at blood COH incapacitation lable to the	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in he time from hanother set to these CO hd at the end hd killed for he d parameters h, and CCHb = 6.8 min, and capacitation. 15-min study, he approach of he saturation he.
abundant smoke components incapacitation (t _i) is an etimeasurements at specific Therefore, variance in t _i rats were determined; blook Fifty male Sprague-Dawley a chamber equipped with insertion of the animal in of experiments, blood COH concentrations at stepwise of each exposure interval, blood collection and COH were: For the 5-min t _i stuson 8 ± 1.3%; for the 35-mi COHb = 71.2 ± 1.0%. COH Coefficients of variation respectively. The signification could be a maximal level be levels may not necessarily	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the dearwood carboxyhemoglobin (COHb) rats were individually exposarotating cage, and tive to the cage until it could be saturation was determined intervals less than tive At rats were quickly removed quantitation. Values (mean dy, CO = 5706 ± 178 ppm, to tive the two Councer to the tw	most f from been hat pr satur sed to vas re no loid inca i from i SD) i > 5. ppm, eau p COHb lo st th t of i	ire atmospher a fire, and vistatistically oduce 5- and ation at tive each CO conducted as the nger walk. It rats exposed pacitation ar the cage and for measure 0 ± 0.35 min ti = 34.5 ± rior to incompacitation and blood COH incapacitation lable to the onal Technic	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in he time from hanother set to these CO hd at the end hd killed for he d parameters h, and CCHb = 6.8 min, and capacitation. 15-min study, he approach of he saturation he.
abundant smoke components incapacitation (t _i) is an et _i measurements at specific Therefore, variance in t _i rats were determined; blook Fifty male Sprague-Dawley is a chamber equipped with insertion of the animal in of experiments, blood COH concentrations at stepwise of each exposure interval, blood collection and COH were: For the 5-min t _i stured to the standard standard composure in the standard collection and COH were: For the 5-min t _i stured to the standard collection and COH were: For the 5-min t _i stured to the standard collection and collection respectively. The signification respectively. The signification collection and level believels may not necessarily 17. Key words Inhalation toxicology; comparation monoxide; time-to-icarboxyhemoglobin; carbon uptake; animal exposure sy	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the discrepance of the cape until it could be saturation was determined intervals less than tinervals less than tinervals were quickly removed quantitation. Values (mean dy, CO = 5706 ± 178 ppm, to tine the two CO = 1902 ± 33 (b) levels tended to plate for tine the two CO = 1902 ± 33 (b) levels tended to plate for tine to CO = 1902 ± 33 (b) levels tended t	most f from been hat pr satur sed to vas re no loid inca i from i SD) i > 5. ppm, eau p COHb lo st th t of i	ire atmospher a fire, and vistatistically oduce 5- and ation at tive each CO concorded as the near walk. It rats exposed pacitation ar the cage and for measure 0 ± 0.35 min ti = 34.5 ± rior to incorded and the at blood COH ancapacitation lable to the onal Technicice, Springf	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in he time from n another set to these CO nd at the end id killed for ed parameters n, and CCHb = 6.8 min, and capacitation. 15-min study, e approach of b saturation in.
abundant smoke components incapacitation (t _i) is an etimeasurements at specific Therefore, variance in t _i rats were determined; blook Fifty male Sprague-Dawley is a chamber equipped with insertion of the animal in of experiments, blood COH concentrations at stepwise of each exposure interval, blood collection and COH were: For the 5-min t _i stured to the standard standard components of variation respectively. The signification components and the signification contains and the signification components and the signification contains and the significant contains and the significan	and is the major threat in and-point related to escape CO concentrations have not at two CO concentrations the dearwood carboxyhemoglobin (COHb) rats were individually exposarotating cage, and tive to the cage until it could be saturation was determined intervals less than tive At rats were quickly removed quantitation. Values (mean dy, CO = 5706 ± 178 ppm, to tive the two Councer to the tw	most f from been hat pr satur sed to vas re no loid inca i from i SD) i > 5. ppm, eau p COHb lo st th t of i	ire atmospher a fire, and vistatistically oduce 5- and ation at tive each CO conducted as the nger walk. It rats exposed pacitation ar the cage and for measure 0 ± 0.35 min ti = 34.5 ± rior to incompacitation and blood COH incapacitation lable to the onal Technic	res. Time-to- variations in y documented. 35-min t _i in vas measured. centration in he time from hanother set to these CO hd at the end hd killed for he d parameters h, and CCHb = 6.8 min, and capacitation. 15-min study, he approach of he saturation he.

VARIATIONS OF TIME-TO-INCAPACITATION AND CARBOXYHEMOGLOBIN VALUES IN RATS EXPOSED TO TWO CARBON MONOXIDE CONCENTRATIONS

INTRODUCTION

Inhalation of carbon monoxide (CO) is recognized as a primary cause of deaths in aircraft fire accidents. Viable escape options during in-flight fires do not exist for 20 to 30 min before the aircraft can land (Crane, 1984), and survival scenarios usually span a shorter period of time in postcrash fires. Both government and industry have initiated the development of passenger protective breathing equipment (PPBE) to increase survivability in fires (McFadden, et al., 1967; Higgins, 1987). Specific performance criteria for the evaluation of such devices have only recently been defined by the European Organization for Civil Aviation Equipment (EUROCAE, 1991); toxic gases and their concentrations generally present in aircraft fires and PPBE maximum pass limits that would provide the wearer a sufficient time to escape from a fire were considered. In general, it is viewed that PPBE at least protect individuals for 5 min during evacuation and for 25 min (20 min + 5 min) during in-flight-plusevacuation. However, an in-flight period of 30 min may be necessary in certain fire scenarios.

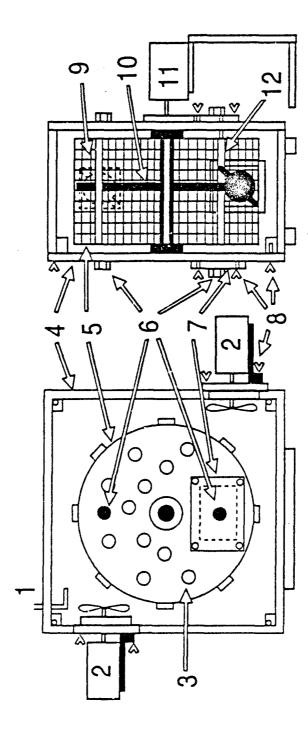
An individual incapacitated from combustion gases has a minimal chance to escape from a fire, and onset of incapacitation may vary among subjects. Therefore, variations in the onset of this response at specific fixed concentrations of toxic combustion gases for the evacuation periods should be evaluated. Concentrations of combustion gases in blood also need to be quantitated to correlate with the response. CO is generated in potentially lethal amounts during fires and can produce incapacitation (Crane, et al., 1989; Hartzell, 1989; Gad, 1990). Time-to-incapacitation (t) is an applicable endpoint for predicting escape time from a fire environment (Crane, et al., 1977; Spurgeon, et al., 1979; Sanders, et al., 1921), and blood COHb saturation levels are routinely measured in CO poisonings to establish the severity of CO exposure. Relationship of the COHb levels with CO exposure concentrations and exposure times is

not totally defined, but models do exist for CO uptake in non-human primates and humans (Peterson and Stewart, 1972; Kaplan and Hartzell, 1984).

This study was designed to determine variations in t_i among the laboratory rats exposed to the CO concentrations that would incapacitate the subjects at 5 and 35 min, representing durations of fire exposure in typical aircraft accidents; blood COHb saturation levels were determined at incapacitation. Uptakes of CO at the 2 concentrations, measured as increases in the COHb levels as a function of exposure time, were included to establish whether CO exposure concentration, t_i, and COHb parameters are interrelated. Information from this study may be useful in interpreting postmortem COHb levels in fire victims.

MATERIALS AND METHODS

Animals


Male rats of Sprague-Dawley origin were obtained from the Charles River Breeding Laboratories, Wilmington, MA, in a 100 to 125 g weight range. They were inspected by a veterinarian upon arrival and held in isolation for 8 days prior to use. Animals were allowed food and water ad libitum during, and following, the isolation period. All animals were fasted overnight before the CO exposure experiments. Rats (4 to 6 per cage) were housed in stainless steel cages (61 cm L X 45 cm W X 27 cm H) with mesh-wire floors in the Institute's centralized animal care facility maintained at 22 to 24°C with a relative humidity of 40 to 60% and a 12-hr on/off fluorescent light cycle (lights on 7 a.m. to 7 p.m.).

Animal Exposure Chamber

The animal exposure chamber used in the study was constructed from 1.3-cm polymethylmethacrylate sheets; its internal dimensions were: 50.8 cm L X 26.6 cm W X

Figure 1. Animal Exposure Chamber.

1. CO-air inlet; 2. Mixing fan assembly (1/15 hp motor, 5,000 rpm, fitted 7-cm, 4-bladed Nylon fan); 3. Ventilation holes, 12-mm diameter, cut through center divider of rotating cage; 4. Exposure chamber walls constructed from 1.3-cm polymethylmethacrylate; 5. Rotating cage assembly (divider and outer rim are 6-mm polymethylmethacrylate; surface is polyethylene mesh); 6. Ports sealed with rubber septa; 7. Access-door for animal insertion and removal; 8. Thumbscrew fasteners; 9. Polyethylene mesh cover, mesh openings are approximately 7-mm square; 10. Center divider and support for rotating cage; 11. Cage drive motor (4-rpm); 12. Cross supports for chamber rims and plastic mesh cover.

50.6 cm H (Figure 1). In the chamber, there was a cylindrical cage (40.5 cm diameter; 25.0 cm W) divided vertically into 2 equal compartments, each 12.5-cm wide and rotated horizontally by a 4-rpm geared motor to provide a circumferential velocity of 8.5 cm/sec. The front compartment of the cage was used for the animal tests. A gasketed access-door (10.4 cm X 10.4 cm) on the front panel of the chamber at the cage floor level allowed rapid animal insertion into, and removal from, the cage. There were 2 fans, 1 on each side of the chamber; 1 fan was at the upper part and the other at the lower part of the chamber. These fans were for homogeneous mixing and circulation of the gas-air mixture in the flow-through chamber atmosphere. Also, there were 2 ports sealed with rubber septa on the front side of the chamber.

Compressed CO (99.5%) and breathing air, purchased locally in cylinders, were mixed by passing through a baffled cylindrical mixing tube before entering the animal chamber. CO and air flow rates were regulated automatically using Scott model 5850E mass flow controllers attached to a Scott model 5878A power supply/control unit (Scott Environmental Technology, Inc., Plumsteadville, PA). The gas-air mixture input was through a port in the top of the chamber, and an exhaust port was located on the rear panel. The entire chamber was installed in a fume hood into which the chamber exhaust was vented.

Experimental Protocol

Preliminary CO concentrations for producing incapacitation at 5- and 35-min exposure times were determined from the concentration-t; curve defined in a previous study (Crane, et al., 1989). To refine the CO concentrations, 37 rats were exposed to CO over a range from 4658 to 6151 ppm that would result in incapacitation at 5 min and 19 rars to concentrations from 1298 to 2249 ppm to produce incapacitation at 35 min. Concentrations produced by flow rates of (25 mL CO + 4 L air)/min and (8.5 mL CO + 4 L air)/min were selected for the 5- and 35-min t₁ study, respectively; these flows correspond to theoretical CO concentrations of 6211 and 2120 ppm.

The dynamic gas-air mixture flows through the chamber prevented changes in CO concentrations during animal insertion, exposure, or removal. Initial tests indicated that ambient O₂ levels were maintained for single

rat exposures by the nominal 4-L/min flow of CO-air mixtures through the chamber. Consequently, O₂ was not monitored during subsequent animal exposure experiments.

Prior to exposure experiments, a volume of pure CO slightly less than that required to bring the chamber atmosphere to the desired concentration was injected into the closed chamber. With fans and rotating cage activated, the CO-air mixture was allowed to flow through the chamber, while sampling, until the stable CO concentration corresponding to the desired level was reached. The fans and cage motor were turned off, sampling timer was set to zero, and retaining screws in the chamber access-door were removed. In rapid sequence, the door was opened, a rat was inserted, the door was closed, and the timer, cage motor, and fans were activated.

The t_i was recorded as the time from insertion of the rat until it could no longer walk (i.e., when it began to tumble or slide) in the rotating cage, as subjectively determined by 2 individuals. Fifty rats were individually exposed to CO at each of the 2 flow rates to determine variations of t_i and of COHb at incapacitation. Additional rats were exposed at each flow rate and removed at intervals (3 rats/interval) less than t_i to determine the rate of increase in blood COHb saturation at each CO level; exposure intervals were 1, 2, 3, and 4 min for the 5-min experiments, while they were 2.5, 5, 10, 15, and 25 min for the 35-min tests.

COHb Determination

At incapacitation or at the end of each exposure interval, rats were removed from the chamber and killed by cervical dislocation. The body cavity was quickly opened, and blood was drawn into a 2.5-cc heparinized syringe from the vena cava at the point where it enters the right atrium. Without air contact, blood was immediately aspirated from the syringe by the sampling probe of a model IL 282 CO-Oximeter (Instrumentation Laboratories, Inc., Lexington, MA). The instrument was modified for use with rat blood; it determines COHb by measuring the absorbance of diluted blood samples at 4 wavelengths in the visible spectrum. Reagents and chemicals used in the analysis were obtained from the CO-Oximeter manufacturer. Each sample was analyzed in

Table 1. Time-to-Incapacitation (t_i) and Carboxyhemoglobin (COHb) Values for Rats Exposed to Two Carbon Monoxide (CO) Concentrations.

Parameters	Values ^{a, b}		
	Mean (Range)	SD	CVX
	For 5-Min Study		
CO (ppm)	5706 (5402 - 6001)	178	3.1
t _i (min)	5.0 (4.2 - 5.8)	0.36	7.2
COHb (%) at t _i	80.8 (78.1 - 83.9)	1.3	1.6
	For 35-Min Study		
CO (ppm)	1902 (1787 - 1945)	33	1.7
t _i (min)	34.8 (23.5 - 53.0)	6.8	19.5
COHb (%) at t _i	71.2 (69.4 - 73.7)	1.0	1.4

*Mean values are derived from rats individually exposed to CO; n=50 for CO and t_i values, and n=49 for COHb values. SD = Standard Deviation; CV=Coefficient of Variation, (SD + Mean) x 100.

^bThe corresponding data from which values were calculated are given in Tables 1 and 2 of the Appendix.

triplicate; results were expressed as an average percent of blood COHb saturation for the 3 replicate analyses.

Chamber CO Concentration Measurement

Prior to and during the exposure, the chamber CO concentration was monitored by a Carle series 100 gas chromatograph (GC) equipped with 3.2-mm (i.d.) packed columns and a thermistor detector. A continuous flow of chamber atmosphere (55 mL/min) was pumped from the port on the access-door by a ceramic-piston pump (FMI model RRP, Fluid Metering, Inc., Oyster Bay, NY), through the GC sample loop, then back to the chamber. Sample injections onto to the GC were controlled by activation of an injector valve by an interval timer. Besides the zero-min injection, injections were at 1 min after rat insertion and subsequently at 1.5-min intervals. CO concentrations in samples were determined from standard curves, which were prepared daily from syringe dilutions of tank CO in air.

The concentration-exposure time curves were essentially straight horizontal lines from the time zero to the end of exposure. This observation suggested that (i) any CO concentration changes during the animal exposures were minimal and (ii) the gas concentration at incapacitation (or the end of the applicable selected exposure intervals) was almost identical to that in the chamber sample immediately preceding incapacitation (or the exposure interval). Therefore, CO concentrations at incapacitation (or the end of the exposure intervals) were estimated by extrapolating the values of the preceding concentrations to the ti or exposure time. The exposure concentration of CO for each experiment was calculated by the integration of chamber CO concentration as a function of exposure time from t = 0 to t = t (or exposure time) and dividing the resulting product by t; (or exposure time), i.e.,

re time), i.e.,
$$Exposure\ Concentration = \frac{\int_{t=0}^{t=t_{i}} Cdt}{t_{i}}, \qquad (1)$$

where C = CO concentration in ppm and t = exposure time in min.

Statistics

The normality of distribution of measurements was determined by performing the Kolmogorov-Smirnov one-sample test at $\alpha = 0.05$ (Miller and Miller, 1988; Wilkinson, 1989). Where possible, data were analyzed at $\alpha = 0.05$ using the analysis of variance and Tukey's HSD multiple comparison test for statistical pairwise differences between the groups (Wilkinson, 1989). Otherwise, the significance of differences between means was checked by the Student's t-test (SigmaPlot, 1991). A difference between means was considered significant at $p \le 0.05$. Values are presented as the mean \pm SD.

RESULTS

As given in Table 1, 5706 ± 178 and 1902 ± 33 ppm CO were effective in producing 5- and 35-min ti, respectively; coefficients of variation for these CO concentrations were correspondingly 3.1 and 1.7%. The distribution of t values at 5706 ppm CO was uniform, showing a spread of 1.6 min from minimum to maximum with the 5.0-min mean; the low 1902 ppm CO produced a much wider t; value range of 29.5 min with the 34.8-min mean. Blood COHb saturation levels at ti were 80.8% for 5706 ppm CO and 71.2% for 1902 ppm CO ($p \le 0.05$). Although these COHb levels were significantly different from each other, their coefficients of variation were essentially identical, i.e., 1.6% for the high CO and 1.4% for the low CO. Except for the COHb values, the CO concentration and ti measurements for the 5- and 35-min experiments had normal distributions (Figure 2); these measurements were not statistically different from their corresponding standard normal population forms (p > 0.05).

Mean CO exposure concentrations for the 5- and 35min uptake study were 5680 ± 77 (n = 12) and $1846 \pm$ 36 (n = 15) ppm, respectively. Within each set of studies, the CO concentrations for the exposure intervals were not statistically different from each other (p > 0.05). As exhibited in Figure 3, the blood COHb saturation increased progressively with duration of CO exposure, as well as with CO concentration. At 5680 ppm CO, the COHb saturation increased rapidly, with a tendency to reach an equilibrium level by the 5-min exposure time.

Figure 2. Distribution of CO Exposure Concentrations, t, Values, and COHb Levels for the 5- and 35-Min Study.

The frequency distributions were based on the measurements derived from 50 rat experiments for CO concentration and t_i and from 49 rat experiments for COHb for each of the 2 studies. The normality of distribution of measurements was established by the Kolmogorov-Smirnov one-sample test at $\alpha = 0.05$. Details are given in the text.

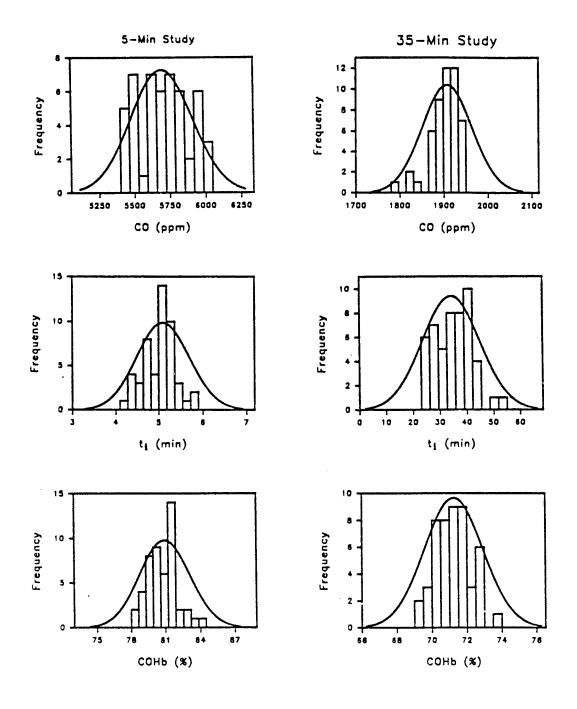
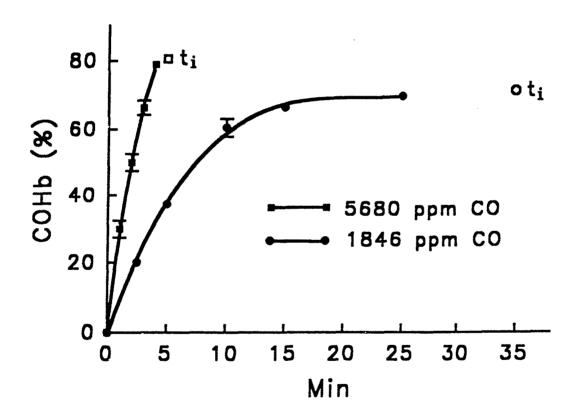



Figure 3. COHb Levels as a Function of Exposure Time at Two CO Concentrations.

Rats were individually exposed to 5680 ± 77 (n = 12) ppm CO for 1, 2, 3, and 4 min and to 1846 ± 36 (n = 15) ppm CO for 2.5, 5, 10, 15, and 25-min periods (3 rats/interval). The CO exposure concentrations were calculated from t = 0 to t = "exposure interval" using Equation (1) given in the text and represent the mean of all exposure intervals within each set of the uptake studies. CO concentrations for each exposure interval, including t, did not significantly change from each other within 5- or 35-min study (p > 0.05). At the end of the exposure period, each rat was removed from the chamber and killed; blood was collected and analyzed for COHb. Details are given in text. Each point represents the mean of the COHb determinations from 3 rats; bars depict SD for each mean value. The points marked "t," at 5 and 35 min represent the mean of COHb values for 3 animals incapacitated at exactly 5 and 35 min, respectively, during the t,-variation study. The data from which these values were calculated are listed in the Appendix (Tables 3 and 4).

The COHb saturation increase was also observed at 1846 ppm CO, but the increase was at a slower rate than that noted at the high CO concentration; the COHb saturation started reaching the steady state by approximately 15 min. For the high CO concentration, the COHb values at the 4-min exposure time and at the 5-min t, were not different from each other (p > 0.05), but these COHb values were different from 1-, 2-, or 3-min exposure time COHb value. Similar comparisons of COHb data points from the low CO exposure showed no difference between the 15- and 25-min COHb value; however, the difference between the COHb levels at the 15- and 35-min time point was significant ($p \le 0.05$).

DISCUSSION

The CO exposure concentrations of 5706 and 1902 ppm were determined to produce nominal 5- and 35-min t_i, respectively. The modest variations in the CO concentrations suggested that the fluctuations observed in t_i values were primarily associated with the individual animal response. However, the variations in the 35-min t_i values, at least in part, could have been because of the increasing difficulty in precisely judging this end-point, where the response onset is not sharp at the low CO concentration. This variability is supported by the limited validity of Haber's rule that the CO exposure concentration (C; ppm) and exposure time (t; min)

product within certain gas concentration and exposure time ranges is a constant (Packham and Hartzell, 1981). At low gas concentrations, the rule loses applicability and variations in the incapacitation response become more pronounced (Crane, et al., 1989). The accuraulated Cet dose of 28530 ppmemin for 5706 ppm CO and the 5 min t, was in reasonable agreement with the doses reported for incapacitation in humans (35000-45000 ppmemin), juvenile baboons (34250 ppmemin), and active cynomolgus monkeys (21000-30000 ppm•min) (Kaplan and Hartzell, 1984), and in rats (30000-40000) (Kaplan and Hartzell, 1984; Kaplan, 1988; Gad. 1990). The higher C*t value of 66190 ppm*min for the 35-min t, might be a reflection of the inapplicability of Haber's rule and could be associated with the tolerability of lower CO concentrations by the animals, but this value was considerably lower than the Cot values that cause lethality in the rats (Kaplan, 1988; Gad, 1990). The COHb level was significantly higher at the high CO concentration (low Cot value) than the low CO concentration (high Cot value).

Although the COHb levels at incapacitation for the 2 CO concentrations were not constant, the COHb values were in agreement with the values from the equation developed by Hartzell and coworkers (1989) to predict the %COHb saturation at incapacitation in rats (Table 2). The blood COHb saturation levels of > 65% at incapacitation and of > 75% at death in rats have been

Table 2. Comparison of Experimental Blood Carboxyhemoglobin (COHb)

Saturation Values with Predicted Values from the Hartzell Equation^a.

CO (ppm)	%COHb Blood Saturation	at Incapacitation
•	Found (n = 49)	Predicted
1902	71.2	70.2
5706	80.8	82.1

^{&#}x27;Hartzell, et al (1989).

documented by Kaplan (1988). Sokal (1975) has indicated that rats showed only faint reaction to mechanical stimuli at a COHb level of 50-51% after exposure to CO in a dynamic-flow metabolic chamber. Purser and Berrill (1983) found that sedentary monkeys reached 40% COHb levels before clear indications of incapacitation were noted, but that active monkeys were severely intoxicated at 33% COHb levels; it was also indicated in the study that a sedentary human with a COHb level of 30% might become rapidly incapacitated upon initiation of sudden physical activity in a fire situation. Gettler and Freimuth (1940) have questioned whether postmortem COHb findings could define if a person was alive or dead when first coming in contact with a fire and cited fatal CO poisonings with 30-40% COHb. The average blood COHb saturation levels of 40% (Mayes, 1991) and 45% (Veronneau, et al., 1992) have been reported in victims of 2 aircraft fire accidents. The possible contribution of other combustion products (e.g., hydrogen cyanide) in causing fatalities, however, cannot be ruled out in individuals succumbing to smoke exposures.

The COHb levels in the uptake study were nearly identical to those predicted by an equation developed by Hartzell, et al. (1989) for modeling COHb loadings versus CO concentrations. The patterns of CO uptake by the blood were clearly consistent with the computerconstructed curves from their equation, showing that COHb reaches a steady state that is proportional to the CO exposure concentration. At 1902 ppm CO, postmorrem COHb analysis for any animal killed after 15 min would have indicated an incapacitating (or lethal) level of COHb, when, in fact, the animal was neither incapacitated nor dead. The very small changes in COHb between the time the "plateau" (steady-state) level is reached and incapacitation occurs, and the significant difference between the 5- and 35-min t, COHb level, require that we consider the recurrent question: "Do blood COHb levels correlate with the degree of CO intoxication?" and its corollary, "Can postmortem COHb levels reliably indicate antemortem incapacitation?" Goldbaum (1976) has shown that dogs bled to an anemic state and, then, infused with CO-saturated erythrocytes to obtain a COHb saturation of about 60% showed no symptoms of CO toxicity, but other dogs breathing CO died with COHb saturations averaging

65%; it was concluded that the presence of elevated concentrations of COHb does not cause symptoms of toxicity and that the more probable mechanism was that dissolved CO, in plasma, competes at the cellular level with O, for cytochrome a., The blood COHb level is indeed an indication of severity of CO exposure. but may not be directly linked to the onset of incapacitation. Other parameters, such as plasma CO, could be directly related to incapacitation. Therefore, the onset of incapacitation might be more associated with the plasma CO concentration than the blood COHb saturation. Whatever the actual mechanism, incapacitation, in our study, was defined as the simple loss of ability to continue walking in a motor-driven, rotating cage, where enforced physical activity was continuous from insertion to incapacitation; the more complex issues of visual and judgmental impairment were not addressed. However, the observation that the animals were capable of apparently normal physical activity for a considerable time after 66-70% COHb levels were reached is significant.

SUMMARY AND CONCLUSIONS

The CO exposure concentrations that produced incapacitation at 5 and 35 min were correspondingly 5706 and 1902 ppm; coefficients of variation in these CO concentrations were 3.1 and 1.7%, respectively. Fifty laboratory rats exposed to the high CO concentration showed an overall response (t_i) variation of 7.2%, and an additional 50 rats exposed to the low CO concentration responded with an overall variation of 19.5%. Blood COHb saturation levels at incapacitation varied with the CO concentration to which the animal was exposed, reaching 80.8% saturation at 5706 ppm and only 71.2% at 1902 ppm; these COHb levels were significantly different from each other ($p \le 0.05$).

No specific COHb level could be linked to the onset of incapacitation, as the blood COHb level reached a plateau before incapacitation occurred at both CO concentrations. For example, at the lower CO concentration, the COHb level reached an equilibrium level by 15 min that remained essentially unchanged, when the animals were incapacitated at approximately 35 min. Thus, it would appear that postmortem COHb concentrations may not be reliable indicators of antemortem

incapacitation from CO inhalation and that appropriate caveats should be applied when making judgments on the basis of COHb analyses only.

REFERENCES

- Crane CR, Sanders DC, Endecott BR, Abbott JK, Smith PW (1977). Inhalation toxicology: I. Design of a small-animal test system. II. Determination of the relative toxic hazards of 75 aircraft cabin materials. Department of Transportation/Federal Aviation Administration, Washington, DC. Publication No. FAA-AM-77-9. Available from National Technical Information Service, Springfield, VA 22161. Order No. ADA043646/9GI.
- Crane CR (1984). Inflight aircraft fires: Toxicological aspects. Panel presentation at the Aerospace Medical Association Scientific Meeting, May 7, 1984, San Diego, CA.
- Crane CR, Sanders DC, Endecott BR (1989). Inhalation toxicology: IX. Times-to-incapacitation for rats exposed to carbon monoxide alone, to hydrogen cyanide alone, and to mixtures of carbon monoxide and hydrogen cyanide. Department of Transportation/Federal Aviation Administration, Washington, DC. Publication No. DOT/FAA/AM-89/4. Available from National Technical Information Service, Springfield, VA 22161. Order No. ADA208195.
- EUROCAE (1991). Minimum operational performance specification for passenger protective breathing equipment. EUROCAE Document No. ED-65. The European Organisation for Civil Aviation Equipment, Paris, France.
- Gad SC (1990). The toxicity of smoke and combustion gases. In: Combustion Toxicology, SC Gad and RC Anderson, eds., pp 63-80. CRC Press, Boca Raton, FL.
- Gettler AO, Freimuth HC (1940). The carbon monoxide content of the blood under various conditions. Am. J. Clin. Pathol., 11, 603-16.

- Goldbaum LR (1976). Is carboxyhemoglobin concentration the indicator of carbon monoxide toxicity?

 In: Legal Medicine Annual, CH Wecht, ed., pp
 165-70. Appleton-Century-Crofts, New York, NY.
- Hartzell GE (1989). Understanding of hazards to humans. In: Advances in Combustion Toxicology, Vol. 1, GE Hartzell, ed., pp 19-37. Technomic Publishing Co., Inc., Lancaster, PA.
- Hartzell GE, Stacy HW, Switzer WG, Priest DN, Packham SC (1989). Modeling of toxicological effects of fire gases: IV. Intoxication of rats by carbon monoxide in the presence of an irritant. In: Advances in Combustion Toxicology, Vol. 2, GE Hartzell, ed., pp 1-17. Technomic Publishing Co., Inc., Lancaster, PA.
- Higgins EA (1987). Summary report of the history and eve as pertinent to the Civil Aeromedical Institute's evaluation of providing smoke/fume protective breathing equipment for airline passenger use. Department of Transportation/Federal Aviation Administration, Washington, DC. Publication No. DOT/FAA/AM-87/5. Available from National Technical Information Service, Springfield, VA 22151. Order No. ADA184499.
- Kaplan F.L., Hartzell GE (1984). Modeling of toxicological effects of fire gases: I. Incapacitating effects of narcotic fire gases. J. Fire Sci., 2, 286-305.
- Kaplan HL (1988). Evaluating the biological hazards of combustion products. In: Product Safety Evaluation Handbook, SC Gad, ed., pp. 409-70. Marcel Dekker, Inc., New York, NY.
- Mayes RW (1991). The toxicological examination of the victims of British Air Tours Boeing 737 accident at Manchester in 1985. J. Forensic Sci., 36, 179-84.
- McFadden EB, Reynolds HI, Funkhouser GE (1967). A protective passenger smoke hood. Department of Transportation/Federal Aviation Administration, Washington, DC. Publication No. AM 67-4. Available from National Technical Information Service, Springfield, VA 22161. Order No. AD657436.

- Miller JC, Miller JN (1988). Statistics for Analytical Chemistry, 2nd edition. Ellis Horwood Limited, Chichester, West Sussex, England.
- Packham SC, Hartzell GE (1981). Fundamentals of combustion toxicology in fire hazard assessment. J. Testing and Evaluation (JTEVA), 9, 341-7.
- Peterson JE, Stewart RD (1972). Human absorption of carbon monoxide from high concentrations in air.

 Amer. Ind. Hyg. Assoc. J., 33, 293-7.
- Purser DA, Berrill KR (1983). Effects of carbon monoxide on behavior in monkeys in relation to human fire hazard. Arch. Environ. Health, 38, 308-15.
- Sanders DC, Endecott BR, Chaturvedi AK (1991). Inhalation toxicology: XII. Comparison of toxicity rankings of six polymers by lethality and by incapacitation in rats. Department of Transportation/Federal Aviation Administration, Washington, DC. Publication No. DOT/FAA/AM-91/17. Available from National Technical Information Service, Springfield, VA 22161.

- SigmaPlot (1991). SigmaPlot®: Scientific Graphing Software. Jandel Scientific, Corte Madera, CA.
- Sokal JA (1975). Lack of the correlation between biochemical effects on rats and blood carboxyhemoglobin concentrations in various conditions of single acute exposure to carbon monoxide. Arch. Toxicol., 34, 331-6.
- Spurgeon JC, Filipczak RA, Feher RE, Sternik SJ (1979).

 A procedure for electronically monitoring animal response parameters using the rotating wheel. J. Combustion Toxicol., 6, 198-207.
- Veronneau S, Ribe JK, Sathyavagiswaran L, Lewis I, Muto J (1992). Lessons learned from the 1991 USAir/ SkyWest collision at LAX, presented at the 44th Annual Meeting of the American Academy of Forensic Sciences, New Orleans, LA, February 17-22, 1992.
- Wilkinson L (1989). SYSTAT: The System for Statistics. SYSTAT, Inc., Evanston, IL.

APPENDIX

TIME-TO-INCAPACITATION (ς) VALUES AND CARBOXYHEMOGLOBIN (COHb) LEVELS AT INCAPACITATION FOR RATS EXPOSED TO CARBON MONOXIDE (CO)

Table 1. Data for 5-Min Study.

Rat No.	t _i (min)	(ppm)	COHb (%)	Rat No.	t _i (min)	CO* (ppm)	(%)
1	5.1	5664	79.4	26	4.5	5730	78.1
2	4.7	5644	78.4	27	5.0	5704	79.6
3	5.2	5777	79.9	28	5.5	5723	80.7
4	5.2	5744	81.3	29	5.0	5733	80.9
	5.3	5753	81.4	30	5.7	5459	83.9
5 6	5.3	5770	80.6	31	5.1	5506	81.4
7	4.6	5750	79.2	32	4.3	5479	79.5
8	4.4	5951	78.9	33	5.1	5472	81.3
9	4.8	5879	79.6	34	4.2	5485	80.2
10	5.2	5993	80.2	35	4.8	5498	79.9
11	4.9	5991	82.3	36	5.8	5604	82.6
12	5.2	5942	80.9	37	5.4	5610	82.5
13	5.0	5950	81.6	38	5.1	5645	81.5
14	5.0	5499	81.4	39	4.6	5705	81.7
15	4.8	5539	80.2	40	4.8	5835	78 7
16	5.0	5627	80.7	41	5.3	5421	81.6
17	4.8	5609	80.0	42	5.3	5423	81.2
18	4.4	5688	• •	43	5.1	5402	81.5
19	4.9	5880	80.6	44	4.3	5419	79.8
20	5.1	5925	80.6	45	5.2	5842	81.9
21	5.5	6001	83.6	46	4.8	5842	79.7
22	5.1	5952	80.7	47	5.3	5823	81.9
23	4.9	5951	81.7	48	5.8	5791	83.2
24	4.9	5657	78.8	49	5.0	5817	81.7
25	5.1	5712	80.1	50	4.8	5490	80.4

^{*}CO exposure concentration, see text for definition. Insufficient blood was obtained from rat no. 18 to analyze for COHb.

Table 2. Data for 35-Min Study.

Rat No.	t _i (min)	(ppm)	СОНЪ (%)	Rat No.	t _i (min)	CO° (ppm)	COHP (2)
1	25.0	1902	70.6	26	23.5	1899	69.7
2	40.2	1908	70.8	27	28.5	1893	70.1
2	28.5	1874	71.8	28	27.0	18 5	70.2
4	41.0	1879	71.5	29	35.5	1905	70.6
5	53.0	1882	72.6	30	24.5	1926	70.2
6	23.8	1866	70.1	31	30.2	1924	70.2
7	36.5	1919	71.9	32	37.5	1926	72.7
8	25.5	1910	69.6	33	27.5	1938	71.4
9	30.0	1916	70.3	34	39.7	1929	73.7
10	37.0	1917	71.3	35	30.2	1933	• •
11	28.0	1900	69.4	36	40.8	1939	72.0
12	36.2	1787	70.4	37	27.0	1939	70.1
13	49.0	1826	71.8	38	37.8	1936	72.3
14	32.0	1823	71.0	39	39.5	1937	72.7
15	27.0	1889	70.6	40	33.7	1937	71.6
16	33.0	1890	71.4	41	36.8	1926	71.0
17	39.5	1845	72.4	42	34.0	1911	71.8
18	43.0	1880	71.3	43	45.0	1900	72.7
19	39.5	1876	71.7	44	39.5	1907	71.1
20	40.0	1885	72.6	45	31.5	1901	69.5
21	35.0	1908	71.0	46	34.0	1930	70.8
22	34.0	1887	71.4	47	38.0	1933	72.7
23	44.5	1889	71.4	48	42.5	1932	72.2
24	40.0	1885	71.2	49	25.5	1931	69.7
25	36.5	1901	71.6	50	34.0	1945	71.8

 $^{^{\}circ}$ CO exposure concentration, see text for definition. Insufficient blood was obtained from rat no. 35 to analyze for CONb.

Table 3. Data for Exposure Periods Less than t_i at Nominal 5680 ppm CO.

Rat No.	Exposure Time (min)	CO (ppm)	СОНЬ (2)
	·,	\FE/	
1	1.0	5621	30.5
1 2 3	1.0	5646	32.0
3	1.0	5706	27.0
4	2.0	5821	47.1
5	2.0	5719	51.7
6	2.0	5745	51.5
7	3.0	5541	67.0
8 9	3.0	5719	68.1
9	3.0	5686	64.0
10	4.0	5567	80.5
11	4.0	5704	77.9
12	4.0	5684	78.5
13	5.0*	5725	81.5
14	5.0°	5627	80.7
15	5.0*	5704	79.6

*Data for rats listed at the 5-min exposure time were selected from the animals in the Appendix Table 1 for the purpose of comparison only; these animals (No. 13, 14, and 15) were incapacitated at the time of blood removal for COHb analyses.

Table 4. Data for Exposure Periods Less than t_i at Nominal 1846 ppm CO.

Rat	Exposure Time	CO	СОНР
No.	(min)	(ppm)	(%)
1	2.5	1797	20.3
1 2 3	2.5	1826	20.4
3	2.5	1860	19.8
4	5.0	1891	38.2
4 5 6	5.0	1816	36.7
6	5.0	1836	37.1
7	10.0	1888	59.4
7 8 9	10.0	1884	58.6
9	10.0	1852	63.5
10	15.0	1881	66.1
11	15.0	1787	66.0
12	15.0	1845	67.4
13	25.0	1792	70.6
14	25.0	1886	70.5
15	25.0	1852	67.9
16	35.0°	1908	71.0
17	35.0°	1930	70.9
18	35.0°	1945	71.9

^{*}Data for rats listed at the 35-min exposure time were selected from the animals in the Appendix Table 2 for the purpose of comparison only; these animals (No. 16, 17, and 18) were incapacitated at the time of blood removal for COHb analyses.